
OUTLINE

 Distributed System Models.

 Distributed System Software Layers

 Distributed System Architectures.

 Client-Server Model Variations.

 Distributed Processes Interfaces and Objects.

 Distributed Architectures Design Requirements.

 Fundamental Models:

◦ Interaction Model.

◦ Failure Model.

◦ Security Model.

Distributed Operating Systems

Distributed System Models

 Architectural models: (as client-server and peer process
models)
◦ Define the way in which the components of systems are:
 Interact with one another, and

 Mapped onto an underlying network of computers.

◦ Describe the layered structure of distributed system software.

 Fundamental models:
◦ Concerned with properties that are common in all of the architectural

models.

◦ Addressed by three models:
 The interaction model: deals with the difficulty of setting time limits.

 The failure model: attempts to give a specification of the exhibited faults by
processes and communication channels.

 The security model: discusses possible threats to processes and
communication channels.

Distributed Operating Systems

Software Layers

 In the layered view of a system each layer offers its
services to the level above and builds its own service
on the services of the layer below.

 Software architecture is the structuring of software in
terms of layers (modules) or services that can be
requested locally or remotely.

Distributed Operating Systems

Applications

Computer and network hardware

Platform
Operating system

Middleware

Software Layers

 Platform:

◦ Lowest-level layers that provide services to other higher layers.

◦ bring a system’s programming interface for communication and
coordination between processes .

◦ Examples:

 Pentium processor / Windows NT

 SPARC processor / Solaris

 Middleware:

◦ Layer of software to mask heterogeneity and provide a unified
distributed programming interface to application programmers.

◦ Provide services, infrastructure services, for use by application
programs.

◦ Examples:

 Object Management Group’s Common Object Request Broker Architecture
(CORBA).

 Java Remote Object Invocation (RMI).

 Microsoft’s Distributed Common Object Model (DCOM).

◦ Limitation: require application level involvement in some tasks.

Distributed Operating Systems

System Architectures

 The architecture include:

◦ The division of responsibilities between system components.

◦ The placement of the components on computers in the

network.

 Client-server model:

◦ Most important and most widely distributed system

architecture.

◦ Client and server roles are assigned and changeable.

 Servers may in turn be clients of other servers.

◦ Services may be implemented as several interacting

processes in different host computers to provide a service to

client processes:

 Servers partition the set of objects on which the service is based

and distribute them among themselves (e.g. Web data and web

servers)

 Servers maintain replicated copies of the service objects on several

Distributed Operating Systems

System Architectures

Distributed Operating Systems

Server

Client

Client

invocation

result

Server
invocation

result

Process:

Key:
Computer:

Clients invoke individual servers

System Architectures

Distributed Operating Systems

Server

Server

Server

Service

Client

Client

A service provided by multiple servers

Centralized Architectures

 Figure 2-3. General interaction

between a client and a server.

Distributed Operating Systems

 The Client-Server

Paradigm(نموذج)
Perhaps the best known paradigm for network applications, the

client-server2 model assigns asymmetric roles to two

collaborating processes.

 One process, the server, plays the role of a service provider

which waits passively for the arrival of requests. The other,

the client, issues specific requests to the server and awaits its

response.

Distributed Operating Systems

...

service request

a server process

a client process

a service

The Client-Server Paradigm, conceptual

Server host

Client host

Multitiered Architectures (3)

 Figure 2-6. An example of a server

acting as client.

Distributed Operating Systems

System Architectures

 Caches and proxy servers:

◦ Cache:

 A store of recently used data objects that is closer to the client

process than those remote objects.

 When an object is needed by a client process the caching

service checks the cache and supplies the object from there in

case of an up-to-date copy is available.

◦ Proxy server:

 Provides a shared cache of web resources for client machines

at a site or across several sites.

 Increase availability and performance of a service by reducing

load on the WAN and web servers.

 May be used to access remote web servers through a firewall.

Distributed Operating Systems

System Architectures

Distributed Operating Systems

Client

Proxy

Web

server

Web

server

server
Client

Web proxy server

System Architectures

 Peer processes:

◦ All processes play similar roles without destination as a

client or a server.

◦ Interacting cooperatively to perform a distributed activity.

◦ Communications pattern will depend on application

requirements.

Distributed Operating Systems

Application
Coordinatio

n
code

Application
Coordinatio

n
code

Application
Coordinatio

n
code

A distributed application

based on peer processes

Client-server Model Variations

 (Mobile Code)

 Example: Java applets
◦ The user running a browser selects a link to an

applets whose code is stored on a web server.

◦ The code is downloaded to the browser and runs
there.

 Advantage:
◦ Good interactive response since.

◦ Does not suffer from the delays or variability of
bandwidth associated with network communication.

 Disadvantage:
◦ Security threat to the local resources in the

destination computer.

Distributed Operating Systems

a) client request results in the downloading of applet code

Web

server

Client
Web

server Applet

Applet code

Client

b) client interacts with the applet

Web applets

Client-server Model Variations

 (Mobile Code)

Distributed Operating Systems

Client-server Model Variations

 (Mobile Agents)

 A running program (including both code and data) that

travels from one computer to another in a network

carrying out a task on someone’s behalf.

 Can make many invocations to local resources at each

visited site.

 Visited sites must decide which local resources are

allowed to use based on the identity of the user owning

the agent.

 Advantage: Reduce communication cost and time by

replacing remote invocation with local ones.

 Disadvantages:

◦ Limited applicability.

◦ Security threat of the visited sites resources.
Distributed Operating Systems

 Downloads its operating system and any applications
needed by the user from a remote file server.

 Applications run locally but files are managed by a
remote file server.

 Users can migrate from one network computer to
another.

 Its processor and memory capacities can be restricted
to reduce its cost.

 Its disk (if included) holds only a minimum of software
and use the reminder space as cache storage to hold
copies of the most recently software and data files
loaded from servers.

Distributed Operating Systems

Client-server Model Variations
 (Network Computers)

 Software layer that supports a window-based
user interface on a local computer while
executing application programs on a remote
computer.

 Same as the network computer scheme but
instead of downloading the applications code
into the user’s computer, it runs them on a
server machine, compute server.

 Compute server is a powerful computer that
has the capacity to run large numbers of
applications simultaneously.

 Disadvantage: Increasing of the delays in highly
interactive graphical applications

Distributed Operating Systems

Client-server Model Variations
 (Thin Clients)

Client-server Model Variations
 (Thin Clients)

Thin

Client

Application

Process

Network computer or PC

Compute server

network

Thin clients and compute servers

Distributed Operating Systems

The Peer-to-Peer System Architecture

http://www.peer-to-peerwg.org/whatis/index.html

 In system architecture and networks, peer-to-peer

is an architecture where computer resources and

services are direct exchanged between computer

systems.

 These resources and services include the

exchange of information, processing cycles, cache

storage, and disk storage for files..

 In such an architecture, computers that have

traditionally been used solely as clients

communicate directly among themselves and can

act as both clients and servers, assuming whatever

role is most efficient for the network.

Distributed Operating Systems

The Peer-to-Peer Distributed Computing

Paradigm

 In the peer-to-peer paradigm, the participating processes

play equal roles, with equivalent capabilities and

responsibilities (hence the term “peer”). Each participant

may issue a request to another participant and receive a

response.

Distributed Operating Systems

process 1

request

response

request

response

process 2

Distributed Operating Systems

Peer-to-Peer distributed

computing

The peer-to-peer paradigm can be implemented with facilities

using any tool that provide message-passing, or with a

higher-level tool such as one that supports the point-to-point

model of the Message System paradigm.

For web applications, the web agent is a protocol promoted by

the XNSORG (the XNS Public Trust Organization) for peer-to-

peer interprocess communication

“Project JXTA is a set of open, generalized peer-to-peer

protocols that allow any connected device (cell phone, to

PDA, PC to server) on the network to communicate and

collaborate. JXTA is short for Juxtapose, as in side by side. It

is a recognition that peer to peer is juxtapose to client server

or Web based computing -- what is considered today's

traditional computing model. “

Distributed Operating Systems

ASSIGNMENT

 Q: Differentiate between thin and thick

client.

Distributed Operating Systems

